Project description
Several medical studies highlight the critical importance of nonverbal communication for the therapeutic relationship. Emotions and related phenomena (desires, moods, and feelings) can be revealed through nonverbal behavior, and have been suggested to influence important healthcare aspects including satisfaction, adherence, and even clinical outcomes.
Wearing masks is a common infection control practice in hospitals. Yet, by partially hiding the facial expression, facemasks greatly impair the nonverbal communication between the patient and the caregiver. This has a significant negative impact on the patient's perceived empathy and diminishes the positive effects of relational continuity. Moreover, facemasks may also be experienced as threatening, especially by vulnerable patients and children.
The objective of the HelloMask project is to develop a new type of transparent medical mask with the appropriate filtration and breathability properties. To achieve this ambitious goal, our innovative approach relies on the development of a completely new and unique type of composite membrane that will have both a very low opacity and a good protective filtration level. The HelloMask, which must comply with all medical regulations, could one day replace regular hospital masks. The underlying concept of the project is to re-humanize the healthcare by making the face of the mask wearer visible.
What is special about the project?
No transparent medical facemask currently exists on the market. The HelloMask project, which relies on the development of a new kind of composite material that would merge filtration properties and transparency, necessitates the combination of multiple skills and competencies. Two major Swiss scientific institutions, EPFL (Swiss Federal Institutes of Technology in Lausanne) and Empa (Swiss Federal Laboratories for Materials Science and Technology in St-Gallen), have therefore collaborated to successfully develop this innovative device.
Status/Results
Our mission was to develop new materials suitable to produce transparent surgical masks. The challenge was to achieve a high degree of transparency while still assuring adequate protection and comfort. Good breathability requires the diffusion of air through the material, hence the presence of a large number of pores. In contrast, transparency is hindered by the presence of heterogeneities within materials. In fact, the scattering of light, responsible for the white appearance of opaque materials, is generated at the interfaces between contiguous heterogeneous domains.
In order to produce a new transparent material, capable of providing adequate comfort and protection, we pursued two different approaches. One based on the synthesis of a nano-fabric via electrospinning and a second based on the development of nanoporous membranes. A selection of polymers comprising interesting properties was tested and potential candidate materials for both functional and support layers have been identified. Ultimately, a functional transparent non-woven and a suitable supporting substrate were produced via sequential deposition of selected electrospun fibers. To produce a robust product we integrated the nanofibers into a mechanically strong membrane realized with an innovative structure especially designed to fulfill the requirements of this application.
The project is now entering in an advanced stage as the materials, the individual components of the device as well as the sealing techniques necessary to produce the final composite membrane have been defined. Most promising prototypes are being extensively characterized and refined. The upcoming goal is to finely balance and optimize the characteristics to produce polished demonstrators. The successive step will be the full implementation of defined upscale principles and the production of fully functioning prototypes at pilot scale.
Publications
D. Kolbuk, P. Sajkiewicz, K. Maniura-Weber, G. Fortunato, Structure and morphology of electrospun polycaprolactone/gelatine nanofibres, European Polymer Journal, 49 (2013) 2052-2061;
G. Yazgan, A.M. Popa, R.M. Rossi, K. Maniura-Weber, J. Puigmartí-Luis, D. Crespy, G. Fortunato, Tunable release of hydrophilic compounds from hydrophobic nanostructured fibers prepared by emulsion electrospinning, Polymer (United Kingdom), 66 (2015) 268-276;
A.G. Guex, D. Hegemann, M.N. Giraud, H.T. Tevaearai, A.M. Popa, R.M. Rossi, G. Fortunato, Covalent immobilisation of VEGF on plasma-coated electrospun scaffolds for tissue engineering applications, Colloids and Surfaces B: Biointerfaces, 123 (2014) 724-733.
Media
Links
Persons involved in the project
Dr. Thierry Pelet, Project Leader, Cooperation and Development Center (CODEV). EPFL.
Dr. Klaus Schönenberger, Head of the EssentialTech centre, EPFL. Hosts the project at EPFL. Administrative and logistic support
Dr. Sacha Sidjanski, School of Life Sciences, EPFL. Fundraising and communication
Dr. René Rossi, Head of Laboratory for Protection and Physiology, Empa. Hosts the project at Empa. Administrative and logistic support.
Dr. Giuseppino Fortunato, Laboratory for Protection and Physiology, Empa. Leads the technical development at Empa.
Dr. Géraldine Guex, Laboratory for Protection and Physiology, Empa. Co-leads the technical development at Empa.
Dr. Davide Barana Laboratory for Protection and Physiology, Empa. In charge of the experimental material research.
Last update to this project presentation 10.02.2021