Editorial
The project management is responsible for the content of the information provided.
Cooperation
This project, funded by Gebert Rüf Stiftung, is supported by the following project partners: School of Engineering and School of Life Sciences, École polytechnique fédérale de Lausanne; Centre Hospitalier Universitaire Vaudois
Project data
-
Project no: GRS-057/18
-
Amount of funding: CHF 375'000
-
Approved: 05.02.2019
-
Duration: 03.2019 - 12.2020
-
Area of activity:
Pilotprojekte, 1998 - 2018
Project management
Project description
Healthcare professionals increasingly use patient-specific medical devices in order to improve the quality of treatments. However, current manufacturing methods are in many cases inadequate to respond to this need. For example, patient-tailored hearing aids made with elastic materials can significantly improve the comfort of hearing-impaired people, but there is currently no reliable, cost-effective way to produce them. In hospitals, surgeons increasingly use plastic 3D printed organ models for surgical training, but it is currently impractical to produce these models with realistic, soft materials. Finally, in synthetic tissue engineering, no straightforward method exists to create large cell-seeded scaffolds with internal vasculatures, hampering progress towards synthetic organs.
To address these challenges, we are deploying a radically new additive manufacturing platform: tomographic 3D printing. It is a volumetric 3D printing approach, as opposed to the traditional layer by layer approach of current 3D printers. With the volumetric approach, it is possible to rapidly produce complex objects in soft materials that are not possible to produce with other technologies. With the help of the Gebert Rüf Stiftung, we aim to develop and field-test a tomographic 3D printer to create concrete soft material manufacturing solutions in biomedical applications.
What is special about the project?
The project will build upon an unconventional new 3D printing method that lifts several of the constraints associated with traditional methods. Additionally, the project involves audiologists, doctors and biomedical researchers who will evaluate and give feedback on the printer and the printed parts. Thanks to their collaboration, we aim to meet the needs of real practitioners in their daily practice. With this project, we hope to break new ground in medical device manufacturing and bioprinting, and enable applications that could not have been possible before.
Status/Results
We have recently delivered and installed our first volumetric printers at various pilot test sites. We have printed several complex structures using a hard acrylic materials, silicones and bio-gels (see publications) in a time of the order of 30 seconds. Additional tests are underway with our implementation partners. The project was spun-off from EPFL as the startup Readily3D SA.
Publications
Volumetric Bioprinting of Complex Living Tissue Constructs within Seconds, Paulina Nuñez Bernal, Paul Delrot, Damien Loterie, Yang Li, Jos Malda, Christophe Moser and Riccardo Levato, Advanced Materials, 2019.
High-resolution volumetric additive manufacturing, Damien Loterie, Paul Delrot and Christophe Moser, Nature Communications, 2020.
Media
Readily3d NewsOur research was featured on specialized 3D printing websites such as 3dprintingmedia.net and 3dprint.com. Our bioprinting paper was picked up by 19 news outlets, blogged by 2, tweeted 48 time,
more detailsGold Award at the MassChallenge Switzerland 2020 competitionHigh-resolution tomographic volumetric additive manufacturing, Nature, February 2020, picked up by 24 news outlets
Printing tiny, high-precision objects in a matter of seconds, 13.2.2020, EPFL
Volumetric Bioprinting of Complex Living Tissue Constructs within Seconds, Altmetric, August 2019, picked up by 19 news outlets
Bioprinting complex living tissue in just a few seconds, 23.8.2019, EPFL
Links
Persons involved in the project
Last update to this project presentation 10.02.2021