Projekte Ergebnisse für «rare disease»

Zurück zur Projekte-Liste
Reset filters
35 / 35

Handlungsfelder

  • Select all
    Deselect all
  • innobooster
  • rare diseases
  • pilotprojekte

Jahr

  • Select all
    Deselect all
  • 2024
  • 2014
  • 2013
  • 2011
  • 2012
  • 2010
  • 2009
  • 2008
No results for Nerai Bio - Unlocking the full potential of gene editing
GRS-035/24 CHF 150'000 Kim Fabiano Marquart 09.2024 - 02.2026
Towards Small Molecule Intervention in Cockayne Syndrome – Rare Diseases 2014
GRS-057/14 CHF 480'000 Nicolas Thomä 07.2015 - 01.2020
Novel treatment options for Aicardi-Goutières Syndrome (AGS) – Rare Diseases 2014
GRS-059/14 CHF 470'000 Andrea Ablasser 04.2015 - 06.2019
Nrf2 and Netherton Syndrome – Rare Diseases 2013
GRS-052/13 CHF 380'000 Matthias Schäfer 06.2014 - 03.2019
Next Generation Sequencing and Functional Platform – Rare Diseases 2014
GRS-061/14 CHF 250'000 Fabio Candotti 05.2015 - 01.2019
Treating Myotonic Dystrophy – Rare Diseases 2014
GRS-060/14 CHF 420'000 Vincent Dion 02.2015 - 10.2018
Stoffwechsel des Immunsystems – Schlüssel für neue Therapieansätze bei immunologischer Abwehrschwäche? – Rare Diseases 2014
GRS-058/14 CHF 400'000 Christoph Hess 04.2015 - 07.2018
Neurodegeneration in Rasmussen Encephalitis – Rare Diseases 2013
GRS-049/13 CHF 490'000 Doron Merkler 04.2014 - 05.2018
Treatment for Cutaneous Lupus Erythematosus – Rare Diseases 2013
GRS-050/13 CHF 450'000 Jean Pieters 01.2014 - 03.2018
Therapies for Dysferlinopathies - Rare Diseases 2011
GRS-042/11 CHF 480'000 Michael Sinnreich 04.2012 - 03.2018
New Drug Targets to Treat Polycystic Kidney Disease (ADPKD) – Rare Diseases 2013
GRS-051/13 CHF 480'000 Daniel Constam 03.2014 - 11.2017
Treating Dominant Optic Athrophy – Rare Diseases 2013
GRS-048/13 CHF 300'000 Albert Neutzner 07.2014 - 11.2017
Chronic Mucocutaneous Candidiasis - Rare Diseases 2011
GRS-044/11 CHF 500'000 Salomé Leibundgut-Landmann 07.2012 - 05.2017
Schweizer Register für Seltene Krankheiten
GRS-030/14 CHF 50'000 Matthias Baumgartner 11.2014 - 03.2017
Molecular Basis of Pseudomonas aeruginosa Persistence during Chronic Infections of Cystic Fibrosis Airways – Rare Diseases 2012
GRS-035/12 CHF 370'000 Urs Jenal 02.2013 - 12.2016
Optogenic Vision Restoration – Rare Diseases 2012
GRS-039/12 CHF 500'000 Botond Roska 12.2012 - 08.2016
Uromodulin-Associated Kidney Diseases – Rare Diseases 2012
GRS-038/12 CHF 490'000 Olivier Devuyst 03.2013 - 08.2016
Diseases of Imprinting – Rare Diseases 2012
GRS-036/12 CHF 400'000 Didier Trono 01.2013 - 06.2016
Inducing Immunological Tolerance to Galsulfase – Rare Diseases 2012
GRS-037/12 CHF 300'000 Jeffrey A. Hubbell 04.2013 - 05.2016
Vaccination for the Prevention and Cure of Inflammatory Bowel Disease – Rare Diseases 2011
GRS-043/11 CHF 190'000 Anne Müller 02.2012 - 11.2015
Lymphedema-Distichiasis – Rare Diseases 2011
GRS-045/11 CHF 500'000 Tatiana Petrova 03.2012 - 09.2015
Prodrug Platform for Rare Colonic Diseases - Rare Diseases 2011
GRS-041/11 CHF 300'000 Jean-Christophe Leroux 05.2012 - 07.2015
Role of Macroautophagy in CGD and Correction of the Defect – Rare Diseases 2010
GRS-046/10 CHF 390'000 Janine Reichenbach 07.2011 - 04.2015
Novel Mechanisms Causing Lafora Disease – Rare Diseases 2010
GRS-049/10 CHF 250'000 Oliver Kötting 04.2011 - 04.2015
Identification of the Genomic Cause of Rare Autosomal Recessive Disorders Using Consanguinity – Rare Diseases 2010
GRS-047/10 CHF 500'000 Stylianos Antonarakis 01.2011 - 02.2015
Rescue of Dysfunctional RNA Processing in Spinal Muscular Atrophy – Rare Diseases 2010
GRS-048/10 CHF 400'000 Christoph Handschin 07.2011 - 11.2014
Towards a better mechanistic understandig of Friedreich’s Ataxia – Rare Diseases 2010
GRS-045/10 CHF 498'000 Marc Bühler 02.2011 - 05.2014
Gene hunting for recessive hereditary peripheral neuropathies by recent and highly-parallel technologies – Rare Diseases 2009
GRS-046/09 CHF 440'000 Carlo Rivolta 07.2010 - 03.2014
Identification of new factors implicated in genetic gonadal disorders – Rare Diseases 2009
GRS-048/09 CHF 450'000 Serge Nef 04.2010 - 12.2013
Seltene Nervenkrankheit – Rare Diseases 2009
GRS-047/09 CHF 340'000 Thorsten Hornemann 03.2010 - 09.2013
Towards preventing nodule formation in Hyaline Fibromatosis patients – Rare Diseases 2009
GRS-044/09 CHF 450'000 Gisou van der Goot 04.2010 - 09.2013
Role of snoRNAs in the Development of Prader Willi Syndrome – Rare Diseases 2011
GRS-046/11 CHF 110'000 Shivendra Kishore 02.2012 - 01.2013
Genetic screening for disease-causing mutations in familial polycythemia using next generation DNA sequencing – Rare Diseases 2009
GRS-045/09 CHF 300'000 Radek Skoda 04.2010 - 12.2012
CheckOrphan - rare, orphan and neglected diseases
GRS-027/08 CHF 365'000 Robert Derham 01.2009 - 08.2010
Kommunikation Programm «Rare Diseases»
GRS-063/08 CHF 85'000 Thomas Pfluger 01.2009 - 12.2009

Suchergebnisse für «rare disease»

Funding strategy

... Baltic Net», «BREF» and «Rare Diseases – New Approaches» and ac... ... ic Net», «BREF» and «Rare Diseases – New Approaches» and accordi...

Rare Diseases

Rare DiseasesRare DiseasesThe goal of the initiative «Rare Diseases – New Approaches» was to improve the dia...

Close

Role of snoRNAs in the Development of Prader Willi Syndrome – Rare Diseases 2011

Editorial

Für den Inhalt der Angaben zeichnet die Projektleitung verantwortlich.

Cooperation

This project is one of the six winners of the call 2011 «Rare Diseases - New Approaches». Project partner: Computational and Systems Biology and Neurobiology, Biozentrum Basel, University of Basel; ETH Zürich

Project data

  • Project no: GRS-046/11 
  • Amount of funding: CHF 110'000 
  • Approved: 01.11.2011 
  • Duration: 02.2012 - 01.2013 
  • Area of activity:  Rare Diseases, 2009 - 2014

Project management

  • Dr. Shivendra Kishore
  • Universität Basel
  • R6022 Biozentrum
  • Klingelbergstrasse 50-70
  • 4056 Basel (Schweiz)

Project description

Prader Willi Syndrome (PWS) is a rare congenital disease that results from the loss of expression of genes located on chromosome 15q11-13. Genes expressed from this locus are imprinted, meaning that only one of the two copies of the gene (maternal or paternal) is expressed. A number of studies implicate the loss of several paternally-expressed, non-protein- coding RNAs from this chromosomal region in the development of PWS, which manifests itself as excessive appetite and life threatening obesity along with mental and growth retardation, symptoms that are due to a hormonal imbalance. The only therapeutic approach that is available so far, i.e. administration of growth hormone, addresses only one phenotypic aspect of the syndrome. Interestingly, the noncoding RNAs that are encoded in the PWS locus are small nucleolar RNAs (snoRNAs) that are expressed predominantly in brain. Their function in the PWS is unknown, and thus understanding the molecular function of the snoRNAs implicated in PWS may be essential for developing new therapies.

Our project exploits recent developments in high throughput methods, like crosslinking and immunoprecipitation (CLIP) to study the functions of PWS associated snoRNAs and their processed variants.

What is special about the project?

snoRNAs are primarily involved in guiding modifications of ribose sugar moiety of ribosomal RNAs and small nuclear RNAs through RNA:RNA interactions. The snoRNAs that are encoded in the Prader Willi Syndrome locus do not bear complementarity to any conventional RNA targets and may therefore have entirely different functions. Previous studies attempted to relax the stringency of RNA-RNA complementarity in search of non-canonical targets, but this approach clearly yields a large number of false positives. Recently however, it has been shownthat these snoRNAs are processed into smaller, metabolically stable RNAs that could indeed have entirely different functions compared to the canonical snoRNAs. In this project, we use novel, genome-wide approaches to uncover the in-vivo RNA interactors of snoRNAs and their derived variants, with the hope that these will pave the way to new therapeutic strategies.

Status/Results

The project has been prematurely terminated. During the 6 months of project activity, we achieved the desired milestones that we set out for. In brief:

PAR-CLIP preformed on snoRNA core proteins in HEK293 cells confirmed the proof of principle. It successfully identified not only known snoRNAs but as well several other snoRNAs expressed in the HEK293 cell lines. As previously anticipated, novel sites of modifications in canonical targets of snoRNAs were identified and showed by primer extension assays. In addition, we identified several novel classes of targets that were not previously anticipated to be regulated by snoRNAs. Deep sequencing data on the small RNAs (15-30 and 20 to 200nt) obtained from total HEK293 RNA shows relevant processing of snoRNAs into smaller fractions from the 5’ and 3’ ends of the mature snoRNA.

PAR-CLIP experiments were subsequently optimized on the mice brain tissue and performed on microsections of freshly dissected mice brain revealed novel mouse brain specific snoRNAs while confirming the abundant expression of PWS linked snoRNAs. We completed a small RNA sequencing from total RNA obtained from mouse brain to identify the processing pattern of PWS linked snoRNAs. We identified that similar to snoRNAs derived from HEK293 cells, PWS associated snoRNAs are processed at their 3’ and 5’ ends and the processed variants might function differently. However, the small RNA derived from PWS loci are present in multiple copies and need to be further rigorously studied, as not only their abundance but as well their diversity is very large.

Links

Persons involved in the project

Last update to this project presentation  19.07.2018