PORTFOLIO

Projektdarstellungen auf der Webseite

Jedes von der Gebert Rüf Stiftung geförderte Projekt wird mit einer Webdarstellung zugänglich gemacht, die über die Kerndaten des Projektes informiert. Mit dieser öffentlichen Darstellung publiziert die Stiftung die erzielten Förderresultate und leistet einen Beitrag zur Kommunikation von Wissenschaft in die Gesellschaft.

Close

Scanvio Medical – Early diagnosis of endometriosis with AI-assisted ultrasound

Redaktion

The project management is responsible for the content of the information provided.

Projektdaten

  • Projekt-Nr: GRS-068/24 
  • Förderbeitrag: CHF 150'000 
  • Bewilligung: 01.11.2024 
  • Dauer: 01.2025 - 12.2025 
  • Handlungsfeld:  InnoBooster, seit 2018

Projektleitung

Projektbeschreibung

Our vision is to make expert ultrasound available to every physician and every patient globally. Our initial focus is to help millions of women who suffer for years from pain and infertility due to endometriosis without a diagnosis.
10% of the female population in childbearing age is suffering from endometriosis. Patients with endometriosis face a delay in diagnosis of 8-12 years. This delay significantly impacts their quality of life due to severe pain and reduced fertility and poses a considerable economic burden on society.
Scanvio is developing intelligent algorithms to replace the gold standard invasive laparoscopy with non-invasive AI-supported ultrasound for faster and more accessible diagnosis of endometriosis. We specialize in AI-assisted medical ultrasound solutions provided as Software-As-Medical-Device (SAMD). Trained on expert data, our innovative software acts as an informative overlay during ultrasound examinations, reducing operator dependency and enabling any gynecologist to perform expert-level scans.
Scanvio is a great example whereby AI allows the integration of expert skills and procedural knowledge into applications and enables less skilled users to achieve the quality level of highly trained experts, thereby democratizing expertise and providing reliable, accessible, and equitable.

Stand/Resultate

The project integrates an AI-based software and hardware solution, the Scanvio Box™, into conventional ultrasound systems to enhance early and accurate endometriosis detection. From January to May 2025, development focuses on proof-of-concept creation, internal software testing, and establishing compliant quality management systems (IEC 62304, ISO 13485). By the end of this phase, the device is ready for first-in-patient trials at Kantonsspital Baden’s Endometriosis Center.
Between June and November 2025, initial clinical tests and pilot studies refine the software, followed by a multi-center validation of real-time ultrasound assistance. These results will support clinical acceptance, unlock further financing, and ultimately improve outcomes for the 10% of women affected by endometriosis. The results of this project will be commercialized by the startup Scanvio Medical AG, incorporated in May 2024.

Links

Am Projekt beteiligte Personen

Dr. Stefan Tuchschmid, Phd, CEO, Project leader, email ETHZ, email Scanvio
Dr. Fabian Laumer, Phd , CTO, email ETHZ, email Scanvio
Prof. Dr. med. Michael Bajka, CMO

External Project partners:
Prof. Dr. Julia Vogt, ETH Zurich
Dr. Marjan Kraak, Kantonsspital Baden

Letzte Aktualisierung dieser Projektdarstellung  19.01.2025